Tsunami !!!

A tsunami can be generated when the plate boundaries abruptly deform and vertically displace the overlying water. Such large vertical movements of the Earth’s crust can occur at plate boundaries. Subduction earthquakes are particularly effective in generating tsunami.

Tsunami are surface gravity waves that are formed as the displaced water mass moves under the influence of gravity and radiates across the ocean like ripples on a pond.

In the 1950s it was discovered that larger tsunami than previously believed possible could be caused by landslides, explosive volcanic action, and impact events when they contact water. These phenomena rapidly displace large volumes of water, as energy from falling debris or expansion is transferred to the water into which the debris falls. Tsunami caused by these mechanisms, unlike the ocean-wide tsunami caused by some earthquakes, generally dissipate quickly and rarely affect coastlines distant from the source due to the small area of sea affected. These events can give rise to much larger local shock waves (solitons), such as the landslide at the head of Lituya Bay which produced a water wave estimated at 50 – 150 m and reached 524 m up local mountains. However, an extremely large landslide could generate a “megatsunami” that might have ocean-wide impacts.


A tsunami can be generated when the plate boundaries abruptly deform and vertically displace the overlying water. Such large vertical movements of the Earth’s crust can occur at plate boundaries. Subduction earthquakes are particularly effective in generating tsunami.

Tsunami are surface gravity waves that are formed as the displaced water mass moves under the influence of gravity and radiates across the ocean like ripples on a pond.

In the 1950s it was discovered that larger tsunami than previously believed possible could be caused by landslides, explosive volcanic action, and impact events when they contact water. These phenomena rapidly displace large volumes of water, as energy from falling debris or expansion is transferred to the water into which the debris falls. Tsunami caused by these mechanisms, unlike the ocean-wide tsunami caused by some earthquakes, generally dissipate quickly and rarely affect coastlines distant from the source due to the small area of sea affected. These events can give rise to much larger local shock waves (solitons), such as the landslide at the head of Lituya Bay which produced a water wave estimated at 50 – 150 m and reached 524 m up local mountains. However, an extremely large landslide could generate a “megatsunami” that might have ocean-wide impacts.

The geological record tells us that there have been massive tsunami in Earth’s past.
There is often no advance warning of an approaching tsunami. However, since earthquakes are often a cause of tsunami, an earthquake felt near a body of water may be considered an indication that a tsunami will shortly follow.

When the first part of a tsunami to reach land is a trough rather than a crest of the wave, the water along the shoreline may recede dramatically, exposing areas that are normally always submerged. This can serve as an advance warning of the approach crest of the tsunami, although the warning arrives only a very short time before the crest, which typically arrives seconds to minutes later.[2] Although in the 2004 tsunami in the Indian Ocean the sea receding was not reported on the African coast or any other western coasts it hit, when the tsunami approached from the east.

Warnings and prevention
Tsunami cannot be prevented or precisely predicted, but there are some warning signs of an impending tsunami, and there are many systems being developed and in use to reduce the damage from tsunami.

In instances where the leading edge of the tsunami wave is its trough, the sea will recede from the coast half of the wave’s period before the wave’s arrival. If the slope is shallow, this recession can exceed many hundreds of meters. People unaware of the danger may remain at the shore due to curiosity, or for collecting fish from the exposed seabed.

Historic tsunami
Tsunami occur most frequently in the Pacific Ocean, but are a global phenomenon; they are possible wherever large bodies of water are found, including inland lakes, where they can be caused by landslides. Very small tsunami, non-destructive and undetectable without specialized equipment, occur frequently as a result of minor earthquakes and other events.

Japan is the nation with the most recorded tsunami in the world. The earliest recorded disaster being that of the A.D. 684 Kakuho Earthquake. The number of tsunami in Japan totals 195 over a 1,313 year period, averaging one event every 6.7 years, the highest rate of occurrence in the world. These waves have hit with such violent fury that entire towns have been destroyed.

On December 26, 2004, an undersea earthquake measuring 9.3 on the Earthquake Magnitude scale occurred 160 km (100 mi) off the western coast of Sumatra, Indonesia. It was the second largest earthquake in recorded history and generated massive tsunamis, which caused widespread devastation when they hit land, leaving an estimated 230,000 people dead in countries around the Indian Ocean.

1 Comment

  1. Nice post, its a really cool blog that you have here, i like the way you present things, keep up the good work, will be back.

    Expect more from you…

    Warm Regards

    Biby Cletus :- Wishing you a very Happy Earth Day

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s